Real-World Commercial Coherent Quantum Annealing Technology
Our project aims to accelerate quantum computing readiness by providing a full-stack solution with coherent quantum annealers and a Quantum as a Service suite for seamless industry integration.
Projectdetails
Introduction
Quantum computing has the potential to revolutionise our world. Its applications range from improving efficiency and productivity to decreasing development time and solving complex problems in material and chemical design, optimisation, and machine learning.
Challenges in Quantum Computing
To deliver on this promise, quantum computing must overcome several technical problems, including:
- Error correction
- Low connectivity
- Low coherence
Our Solution
We offer a way to speed up quantum computing's market readiness with our full-stack solution.
Coherent Quantum Annealers
Our coherent quantum annealers allow us to bypass roadblocks that limit quantum hardware:
- The coherent quantum annealing approach doesn't require complex error correction.
- Our architecture promotes connectivity, high quantum coherence, and innovative couplings to address non-simulatable quantum compute problems.
Quantum as a Service
We combine this with a Quantum as a Service software suite, which includes:
- Hardware orchestration toolkit
- Cloud access
- Co-design capabilities
These features will ease the adoption into industry workflows.
Conclusion
Taken together, our solution delivers a mature quantum computing technology ready to deliver value as soon as this project ends.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.495.000 |
Totale projectbegroting | € 2.495.000 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 28-2-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- QILIMANJARO QUANTUM TECH SLpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Targeting cardiac fibrosis with next generation RNA therapeuticsFIBREX aims to develop an innovative ncRNA-based antisense oligonucleotide therapy targeting Meg3 to reverse cardiac fibrosis and treat heart failure, advancing towards clinical readiness. | EIC Transition | € 2.499.482 | 2022 | Details |
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationSThe NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring. | EIC Transition | € 2.497.750 | 2022 | Details |
Predictive REagent-Antibody Replacement Technology stage 2-TranslationPRe-ART-2T aims to advance predictive antibody technology to TRL6, replacing low-quality monoclonal antibodies with high-performing synthetic alternatives, and attract ~€20M in investment. | EIC Transition | € 800.000 | 2022 | Details |
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stageDeveloping a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships. | EIC Transition | € 2.499.810 | 2022 | Details |
Targeting cardiac fibrosis with next generation RNA therapeutics
FIBREX aims to develop an innovative ncRNA-based antisense oligonucleotide therapy targeting Meg3 to reverse cardiac fibrosis and treat heart failure, advancing towards clinical readiness.
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationS
The NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring.
Predictive REagent-Antibody Replacement Technology stage 2-Translation
PRe-ART-2T aims to advance predictive antibody technology to TRL6, replacing low-quality monoclonal antibodies with high-performing synthetic alternatives, and attract ~€20M in investment.
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stage
Developing a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGEThe QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms. | EIC Pathfinder | € 3.420.513 | 2023 | Details |
Quantum-enhanced Machine LearningEqual1 aims to finalize a scalable, sustainable quantum processor chip for AI applications, enhancing machine learning capabilities while reducing carbon footprint. | EIC Accelerator | € 2.500.000 | 2022 | Details |
Enabling efficient computation on fault tolerant quantum computersDevelop a suite of hardware-agnostic quantum algorithms to optimize quantum circuits, enabling faster solutions to complex business problems beyond classical computing capabilities. | EIC Accelerator | € 2.499.999 | 2023 | Details |
Democratizing quantum computing with 3D scalable and customizable quantum processors:The project aims to revolutionize quantum computing by developing affordable, customizable, and scalable QPUs using innovative technologies, enabling faster access to high-capacity quantum processors. | EIC Accelerator | € 2.499.700 | 2023 | Details |
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGE
The QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms.
Quantum-enhanced Machine Learning
Equal1 aims to finalize a scalable, sustainable quantum processor chip for AI applications, enhancing machine learning capabilities while reducing carbon footprint.
Enabling efficient computation on fault tolerant quantum computers
Develop a suite of hardware-agnostic quantum algorithms to optimize quantum circuits, enabling faster solutions to complex business problems beyond classical computing capabilities.
Democratizing quantum computing with 3D scalable and customizable quantum processors:
The project aims to revolutionize quantum computing by developing affordable, customizable, and scalable QPUs using innovative technologies, enabling faster access to high-capacity quantum processors.