Photoacoustic imaging and artificial intelligence-based theranostic approach for cancer
PHIRE aims to develop a novel theranostic device for high-resolution imaging and treatment of bladder cancer lesions under 1 mm, improving patient outcomes and reducing tumor relapse.
Projectdetails
Introduction
Health programs crave for diagnostic imaging and eradication of chemoresistant neoplastic lesions smaller than 1 mm in size. PHIRE, based on the outcomes from EDIT (FET-OPEN-RIA, GA#801126), aims at bringing closer to market a novel high-resolution theranostic medical device effective in the clinical applications for lesions <1 mm, ready for application in human bladder cancer and effective both in male and female patients.
Development of PHIRE Solution
The PHIRE solution will be developed using a swine model and will include:
- An add-on module for pre-existing off-the-shelf photoacoustic devices, allowing for photoacoustic imaging of hollow organs located deeper in the human body, designed to be used in combination with
- An artificial intelligence-assisted prediction map for the image-guided gold nanorods-assisted photo-thermal therapy.
- A large-scale synthesis of urine-stable gold nanorods for clinical use.
Clinical Applications and Impact
The adoption of this new device for clinical applications will reduce the frequency of bladder tumor relapse and the number of patients with relapsing tumors, leading to a drastic positive impact on the quality of life of patients while reducing the social cost of managing these patients.
Furthermore, PHIRE's results will open the way for the deployment of theranostic applications against lesions <1 mm in other hollow human organs.
Broader Market Applications
PHIRE innovative solutions will also be applicable to other markets, such as:
- Photoacoustic and diagnostic imaging
- Gold nanoparticles
- Cystoscopy
- Medical software
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.084.871 |
Totale projectbegroting | € 2.084.871 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2026 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- OSPEDALE SAN RAFFAELE SRLpenvoerder
- ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
- FUJIFILM SONOSITE BV
- META
- ASCEND TECHNOLOGIES LIMITED
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Targeting cardiac fibrosis with next generation RNA therapeuticsFIBREX aims to develop an innovative ncRNA-based antisense oligonucleotide therapy targeting Meg3 to reverse cardiac fibrosis and treat heart failure, advancing towards clinical readiness. | EIC Transition | € 2.499.482 | 2022 | Details |
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationSThe NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring. | EIC Transition | € 2.497.750 | 2022 | Details |
Predictive REagent-Antibody Replacement Technology stage 2-TranslationPRe-ART-2T aims to advance predictive antibody technology to TRL6, replacing low-quality monoclonal antibodies with high-performing synthetic alternatives, and attract ~€20M in investment. | EIC Transition | € 800.000 | 2022 | Details |
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stageDeveloping a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships. | EIC Transition | € 2.499.810 | 2022 | Details |
Targeting cardiac fibrosis with next generation RNA therapeutics
FIBREX aims to develop an innovative ncRNA-based antisense oligonucleotide therapy targeting Meg3 to reverse cardiac fibrosis and treat heart failure, advancing towards clinical readiness.
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationS
The NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring.
Predictive REagent-Antibody Replacement Technology stage 2-Translation
PRe-ART-2T aims to advance predictive antibody technology to TRL6, replacing low-quality monoclonal antibodies with high-performing synthetic alternatives, and attract ~€20M in investment.
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stage
Developing a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nano-assisted digitalizing of cancer phenotyping for immunotherapyThe ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes. | ERC COG | € 1.993.875 | 2023 | Details |
Development of a high-throughput microplate based device to analyse the patient derived tumour microenvironment3DTUMOUR aims to enhance drug development success by providing patient-specific 3D bioprinted tumour models for ex vivo testing, improving treatment efficacy and reducing toxicity in cancer therapy. | ERC POC | € 150.000 | 2024 | Details |
The first IVDR-approved commercial software solutions for AI-powered RNA-based companion and precision cancer diagnostics of acute myeloid leukaemia and bladder cancerQlucore aims to revolutionize precision oncology by developing AI-driven diagnostic software for cancer, enhancing accuracy in gene analysis and improving survival rates across Europe. | EIC Accelerator | € 2.491.650 | 2024 | Details |
Accurate quantification of neurologic disease over timeThe project aims to develop CHRONOS, an AI-driven diagnostic tool using synthetic biomaps to enable earlier and more accurate detection of brain tumors, facilitating timely clinical decisions. | ERC POC | € 150.000 | 2025 | Details |
Nano-assisted digitalizing of cancer phenotyping for immunotherapy
The ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes.
Development of a high-throughput microplate based device to analyse the patient derived tumour microenvironment
3DTUMOUR aims to enhance drug development success by providing patient-specific 3D bioprinted tumour models for ex vivo testing, improving treatment efficacy and reducing toxicity in cancer therapy.
The first IVDR-approved commercial software solutions for AI-powered RNA-based companion and precision cancer diagnostics of acute myeloid leukaemia and bladder cancer
Qlucore aims to revolutionize precision oncology by developing AI-driven diagnostic software for cancer, enhancing accuracy in gene analysis and improving survival rates across Europe.
Accurate quantification of neurologic disease over time
The project aims to develop CHRONOS, an AI-driven diagnostic tool using synthetic biomaps to enable earlier and more accurate detection of brain tumors, facilitating timely clinical decisions.