Controlling immunity with small molecules for a better therapy
The IMMUNOCON project aims to advance EMT-224, an immune activator, towards clinical trials to improve treatment options for late-stage colorectal cancer by converting 'cold' tumors into 'hot' ones.
Projectdetails
Introduction
The IMMUNOCON project aims to advance EMT-224, a first-in-class small molecule immune activator, towards clinical readiness to address the urgent need for effective therapies for late-stage solid cancers, such as colorectal cancer (CRC). CRC is the third most common cancer globally, with limited treatment options for advanced stages, resulting in poor prognosis and high mortality rates.
Current Challenges
While immunotherapies, such as immune checkpoint inhibitors (ICIs), have revolutionized the management of certain solid cancers, many CRC patients do not respond to treatment due to the immunologically 'cold' nature of these tumours.
Potential Breakthrough
EMT-224 represents a potential breakthrough in immunotherapy by converting 'cold' tumours into 'hot' ones, thereby enhancing the efficacy of ICIs. This innovation builds on results from the ERC Proof of Concept project IMMUNOSTIM, where EMT-224 was identified as a potent immune activator capable of breaking cancer immune evasion mechanisms.
Project Goals
The IMMUNOCON project will finalize the pre-clinical validation of EMT-224, focusing on its safety and efficacy in in vivo cancer models. This will involve:
- CTA-enabling studies
- GMP manufacturing preparations
- A comprehensive commercial roadmap
Business Strategy
The project will also establish a robust business strategy for EMUNO Therapeutics GmbH (EMT), positioning it as a leading early drug discovery company in the immunotherapy field.
Future Outlook
The goal is to mature EMT to support the clinical development and eventual commercialization of EMT-224, which has strong 'pipeline-in-a-product' potential for a broad range of solid cancers. By the end of the project, EMT-224 will be poised for Phase 1 clinical trials, marking a significant step towards bringing a novel, effective treatment to patients suffering from late-stage CRC and potentially other cancers.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.484.700 |
Totale projectbegroting | € 2.484.700 |
Tijdlijn
Startdatum | 1-4-2025 |
Einddatum | 31-3-2027 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- EMUNO THERAPEUTICS GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
RESTORING IMMUNITY CONTROL OF GI CANCERSTIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization. | EIC Transition | € 2.007.750 | 2025 | Details |
Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell ReprogrammingThe Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization. | EIC Transition | € 2.480.367 | 2025 | Details |
Clinical readiness of a live biotherapeutic for treatment of Non-Small Cell Lung Cancer (NSCLC)Pulmobiotics aims to develop PB_LC, an engineered Mycoplasma pneumoniae strain, to enhance immunotherapy for NSCLC patients by improving T cell infiltration and overcoming treatment resistance. | EIC Transition | € 1.881.875 | 2023 | Details |
Anticancer approach based on the Metabolic Disruption of Cancer Stem Cells with high effectivity across a wide range of solid tumoursThe project aims to develop the novel anticancer agent IGN116, targeting cancer stem cells in CRC and PDAC, to provide effective treatment with low toxicity, benefiting thousands of patients by 2040. | EIC Transition | € 2.498.015 | 2025 | Details |
RESTORING IMMUNITY CONTROL OF GI CANCERS
TIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization.
Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell Reprogramming
The Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization.
Clinical readiness of a live biotherapeutic for treatment of Non-Small Cell Lung Cancer (NSCLC)
Pulmobiotics aims to develop PB_LC, an engineered Mycoplasma pneumoniae strain, to enhance immunotherapy for NSCLC patients by improving T cell infiltration and overcoming treatment resistance.
Anticancer approach based on the Metabolic Disruption of Cancer Stem Cells with high effectivity across a wide range of solid tumours
The project aims to develop the novel anticancer agent IGN116, targeting cancer stem cells in CRC and PDAC, to provide effective treatment with low toxicity, benefiting thousands of patients by 2040.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Unlocking a T cell-mediated Immune response in therapy-challenged TumorsUnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Modular Targeted Nanoplatform for Immune Cell Regulation and TherapyImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative. | ERC Proof of... | € 150.000 | 2023 | Details |
Targeted Immunocytokines by CaGing and local ReleaseThis project aims to develop and evaluate a novel, locally activated innate immune therapy for cancer that minimizes systemic toxicity while enhancing treatment efficacy. | ERC Proof of... | € 150.000 | 2025 | Details |
IOO: a novel assay to predict patient response to immune checkpoint inhibitors, optimising patient stratification to these therapies and tripling solid tumour patient outcomes in immuno-oncology.The project aims to enhance cancer immunotherapy efficacy by developing a validated biomarker assay to predict patient responses, potentially doubling survival rates for lethal tumors. | EIC Accelerator | € 2.496.112 | 2024 | Details |
Nanobodies blocking immunosuppressive unexplored proteins from the tumor endothelium to promote anti-tumor immune responseThis project aims to develop novel nanobody therapeutics targeting unexplored immunosuppressive genes in endothelial cells to enhance anti-tumor immunity in non-small cell lung cancer. | ERC Proof of... | € 150.000 | 2025 | Details |
Unlocking a T cell-mediated Immune response in therapy-challenged Tumors
UnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors.
Modular Targeted Nanoplatform for Immune Cell Regulation and Therapy
ImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative.
Targeted Immunocytokines by CaGing and local Release
This project aims to develop and evaluate a novel, locally activated innate immune therapy for cancer that minimizes systemic toxicity while enhancing treatment efficacy.
IOO: a novel assay to predict patient response to immune checkpoint inhibitors, optimising patient stratification to these therapies and tripling solid tumour patient outcomes in immuno-oncology.
The project aims to enhance cancer immunotherapy efficacy by developing a validated biomarker assay to predict patient responses, potentially doubling survival rates for lethal tumors.
Nanobodies blocking immunosuppressive unexplored proteins from the tumor endothelium to promote anti-tumor immune response
This project aims to develop novel nanobody therapeutics targeting unexplored immunosuppressive genes in endothelial cells to enhance anti-tumor immunity in non-small cell lung cancer.