Teaching Lytic Polysaccharide Monooxygenases to do Cytochrome P450 Catalysis
The project aims to engineer lytic polysaccharide monooxygenases (LPMOs) for efficient oxidation of hydrocarbons, enhancing biotechnological applications in bioethanol and pharmaceuticals.
Projectdetails
Introduction
Lytic polysaccharide monooxygenases (LPMO) and cytochrome P450 (CYP) are copper- and iron-dependent, respectively, enzymatic systems that perform regio- and stereospecific oxidation of non-activated hydrocarbons in Nature. To control such reactions in modern industry and biotechnology is of utmost importance in creating products of value such as second-generation bioethanol and products of value for, e.g., the pharmaceutical industry.
Challenges with CYPs
Due to the major drawbacks of using CYPs, including their partially membrane-bound nature and the requirement of a reductase in combination with reducing agents such as NAD(P)H to transfer electrons to the active site for oxygen activation, it is highly desirable to develop a new type of catalyst that can perform the same type of reactions.
Alternative Strategy with LPMOs
An attractive alternative strategy is to engineer LPMOs to perform CYP catalysis. LPMOs are small, robust, easy to produce in large scale, and rigid water-soluble proteins with a plethora of electron donors.
Advantages of LPMOs
- The extended, flat LPMO surface, with huge natural sequence variation and thus, likely, mutability, provides a fantastic scaffold for engineering access to the active site as well as substrate affinity.
- We propose to use LPMOs engineered to accommodate typical CYP substrates and immobilize this on solid supports to provide confinement necessary in bringing the oxygen species together with the C-H bond to be oxidized in a tailored, "closed" environment.
Enhanced Catalysis
Moreover, the rate of LPMO catalysis can be greatly enhanced compared to traditional CYP catalysis by the addition of H2O2 in the presence of low, priming concentrations of an external reductant to achieve efficiency constants (kcat/Km) in the order of 10^6 M^-1s^-1, which is typical for peroxygenases.
Research Alignment
The proposed ground-breaking research fits excellently well with the work program "Future and Emerging Technologies" where the goal is to challenge current thinking.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.999.772 |
Totale projectbegroting | € 2.999.772 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 31-5-2025 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- NORGES MILJO-OG BIOVITENSKAPLIGE UNIVERSITETpenvoerder
- INSTYTUT KATALIZY I FIZYKOCHEMII POWIERZCHNI IM. JERZEGO HABERA POLSKA AKADEMIA NAUK
- POLITECHNIKA SLASKA
- TECHNISCHE UNIVERSITAET GRAZ
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Practical oxyfunctionalisation biocatalysts by engineering monooxygenases into peroxyzymes.PeroxyZyme aims to develop evolved monooxygenases as practical catalysts for selective C-H bond functionalization using hydrogen peroxide, enhancing efficiency in organic chemistry. | ERC ADG | € 2.500.000 | 2022 | Details |
Tailoring lattice oxygen and photo-induced polarons to control reaction mechanisms and boost catalytic activityPhotoDefect aims to enhance photoelectrochemical reactions by investigating defects and polarons in metal oxide photoelectrodes using advanced in situ techniques to improve efficiency and selectivity. | ERC STG | € 1.895.956 | 2023 | Details |
Enhanced Biomass Valorisation by Engineering of Polyoxometalate CatalystsThe BioValCat project aims to develop a scalable and safe biomass valorisation process using optimized POM catalysts in methanol-aqueous solutions for high carbon efficiency and valuable product yield. | ERC COG | € 1.996.625 | 2023 | Details |
Heterogeneous biocatalysts for oxygen-independent oxidations using inorganic saltsNIBIOX aims to enhance industrial oxidative biocatalysis by using immobilized oxidoreductases with inorganic salts, improving productivity and profitability in fine chemicals. | ERC POC | € 150.000 | 2023 | Details |
Practical oxyfunctionalisation biocatalysts by engineering monooxygenases into peroxyzymes.
PeroxyZyme aims to develop evolved monooxygenases as practical catalysts for selective C-H bond functionalization using hydrogen peroxide, enhancing efficiency in organic chemistry.
Tailoring lattice oxygen and photo-induced polarons to control reaction mechanisms and boost catalytic activity
PhotoDefect aims to enhance photoelectrochemical reactions by investigating defects and polarons in metal oxide photoelectrodes using advanced in situ techniques to improve efficiency and selectivity.
Enhanced Biomass Valorisation by Engineering of Polyoxometalate Catalysts
The BioValCat project aims to develop a scalable and safe biomass valorisation process using optimized POM catalysts in methanol-aqueous solutions for high carbon efficiency and valuable product yield.
Heterogeneous biocatalysts for oxygen-independent oxidations using inorganic salts
NIBIOX aims to enhance industrial oxidative biocatalysis by using immobilized oxidoreductases with inorganic salts, improving productivity and profitability in fine chemicals.