Photosynthetic electron focusing technology for direct efficient biohydrogen production from solar energy
The project aims to develop a cost-effective hydrogen production technology using genetically engineered cyanobacteria in large-scale photobioreactors, achieving high energy efficiency and sustainability.
Projectdetails
Introduction
We propose a disruptive technology based on synthetic biology, which we call photosynthetic electron focusing, for the efficient production of hydrogen using low-cost photosynthetic bacteria (cyanobacteria) genetically re-engineered to exclusively direct the solar energy to hydrogen.
Energy Efficiency
Through the development of new high-efficiency large-scale photobioreactors, we will obtain an unprecedented increase in energy efficiency, up to ten-fold higher than current approaches.
Cost Estimates
Our theoretical estimates for the production costs could be as low as 5/Kg of H2, making our technology potentially comparable to current photovoltaic systems coupled with electrolysis.
Adaptability and Sustainability
Our bacteria could be adapted and grown in seawater and wastewater. Moreover, it would not require the use of Critical Raw Materials or toxic processes.
Biological Route
Our biological route involves using fermentation-like technologies, with expertise available in many sectors such as the food industry.
Bioreactor Construction
It will also employ contained bioreactors, constructed with simple fabrication technologies, which are decreasing in cost. For example, the cost of 3D printing materials is decreasing much faster than the cost of microfabrication.
Validation Process
We will validate our engineered cyanobacterium in a custom 1,300 L photobioreactor, which will be able to produce validated innovative green H2 production technology.
Proof-of-Concept
This proof-of-concept production will be located in a hydrogen industrial stakeholder to ensure the large-scale relevance of our production.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 4.194.947 |
Totale projectbegroting | € 4.194.947 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 30-9-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder
- UPPSALA UNIVERSITET
- I3S - INSTITUTO DE INVESTIGACAO E INOVACAO EM SAUDE DA UNIVERSIDADE DO PORTO
- M2M ENGINEERING SAS DI DIANO MARCELLO MARIA
- CONSIGLIO NAZIONALE DELLE RICERCHE
- ALGREEN BV
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
FIRST SMALL-SCALE DEPLOYMENT (FSD) OF A PRE-COMMERCIAL PLANT BASED ON PHOTOELECTROCATALYTIC TECHNOLOGY FOR HYDROGEN PRODUCTIONThe SUN2HY project aims to demonstrate the world's first pre-commercial Photoelectrocatalysis plant for sustainable hydrogen production, targeting 201 tH2/year to support local mobility and reduce CO2 emissions. | InnovFund SSC | € 4.484.293 | 2022 | Details |
Power-to-X: STREAMing Hydrogen from 3-Band Solar Cells boosted with Photonic ManagementX-STREAM aims to revolutionize sustainable energy by integrating advanced photovoltaic systems with electrochemical storage to achieve high-efficiency hydrogen production from solar energy. | ERC COG | € 1.999.608 | 2024 | Details |
WARMDEMOPhotanol ontwikkelt een duurzame technologie met gemodificeerde cyanobacteriën die CO2 omzet in chemische stoffen, gericht op het opzetten van een demonstratiefaciliteit in mediterane omstandigheden. | MIT Haalbaarheid | € 19.992 | 2023 | Details |
FIRST SMALL-SCALE DEPLOYMENT (FSD) OF A PRE-COMMERCIAL PLANT BASED ON PHOTOELECTROCATALYTIC TECHNOLOGY FOR HYDROGEN PRODUCTION
The SUN2HY project aims to demonstrate the world's first pre-commercial Photoelectrocatalysis plant for sustainable hydrogen production, targeting 201 tH2/year to support local mobility and reduce CO2 emissions.
Power-to-X: STREAMing Hydrogen from 3-Band Solar Cells boosted with Photonic Management
X-STREAM aims to revolutionize sustainable energy by integrating advanced photovoltaic systems with electrochemical storage to achieve high-efficiency hydrogen production from solar energy.
WARMDEMO
Photanol ontwikkelt een duurzame technologie met gemodificeerde cyanobacteriën die CO2 omzet in chemische stoffen, gericht op het opzetten van een demonstratiefaciliteit in mediterane omstandigheden.