MILD Combustion with Nitrogen and Carbon Dioxide Reforming
This project aims to develop a scalable process for CO2 and nitrogen management through biomass pyrolysis and MILD combustion, producing syngas and biochar for sustainable energy and soil enhancement.
Projectdetails
Introduction
Reduced net emissions of carbon dioxide (CO2) are necessary to achieve the goals of limited global warming and ensure a sustainable future for our society. This proposal presents a versatile and scalable process for the management and valorization of CO2 and nitrogen.
Pyrolysis Process
Starting from biomass residues, a first step in the proposed scheme involves a pyrolysis process that results in the release of pyrolysis oil of rather low heating value. However, combustion under very diluted conditions using a Moderate or Intense Low-oxygen Dilution (MILD) concept allows for efficient and low-pollutant energy conversion.
MILD Combustion and Syngas Generation
The MILD combustion process is utilized for a CO2 reforming step resulting in the generation of syngas. The pyrolysis and the reforming are supplied by heat from the MILD combustion that can be further supplemented by intermittent energy sources such as solar and wind power.
Char Product Utilization
The residual char product from the pyrolysis step can be upgraded by activation with CO2 and utilized for the adsorption of nitrogen from biomass. The nitrogen-enriched char can then be used for soil carbonization and nitrification.
Circular Approach
The concept thus addresses the objective of CO2 and nitrogen management with efficient renewable resource deployment. It also adopts a circular approach as it can employ biomass residues as raw material and combines the production of heat and syngas with that of porous biochar materials for several possible utilizations.
Adaptability and Optimization
The process can be adapted by multiple parameters and optimized for different conditions and purposes. Rather than optimizing on a single product or aspect, the concept brings a holistic view.
Research and Development
The development of the process will include experimental research with state-of-the-art analysis methods, based on laser diagnostics and neutron scattering, combined with numerical modeling of the thermochemical processes.
Life-Cycle Analysis
Life-cycle analysis will be made during the project to guide process development and assess its impact.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.697.437 |
Totale projectbegroting | € 3.697.437 |
Tijdlijn
Startdatum | 1-11-2023 |
Einddatum | 31-10-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- LUNDS UNIVERSITETpenvoerder
- CONSIGLIO NAZIONALE DELLE RICERCHE
- DANMARKS TEKNISKE UNIVERSITET
- RISE RESEARCH INSTITUTES OF SWEDEN AB
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
SUstainable Photo-ElectRochemical VALorization of flue gasesThe SUPERVAL project aims to develop a solar-powered system that captures and valorizes CO2 and NOx from flue gas into valuable chemicals, promoting sustainability and reducing emissions. | EIC Pathfinder | € 3.571.708 | 2023 | Details |
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and ChemicalsThe project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration. | EIC Pathfinder | € 2.250.500 | 2023 | Details |
Green valorization of CO2 and Nitrogen compounds for making fertilizersThe CONFETI project aims to develop a sustainable technology for converting CO2 and N2 into urea fertilizer using renewable energy, promoting a circular economy in agriculture. | EIC Pathfinder | € 3.992.975 | 2023 | Details |
Electrobiocatalytic cascade for bulk reduction of CO2 to CO coupled to fermentative production of high value diamine monomersECOMO aims to innovate sustainable production of high-value diamines from CO2 and nitrogen using bioelectrocatalysis and engineered microbes, enhancing chemical industry building blocks. | EIC Pathfinder | € 3.776.701 | 2023 | Details |
Green H2 and circular bio-coal from biowaste for cost-competitive sustainable SteelH2STEEL aims to transform wet waste into green hydrogen, carbon, and critical raw materials for metallurgy, supporting the EU's net-zero emissions goal through innovative pyrolysis and leaching methods. | EIC Pathfinder | € 2.368.910 | 2022 | Details |
SUstainable Photo-ElectRochemical VALorization of flue gases
The SUPERVAL project aims to develop a solar-powered system that captures and valorizes CO2 and NOx from flue gas into valuable chemicals, promoting sustainability and reducing emissions.
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and Chemicals
The project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration.
Green valorization of CO2 and Nitrogen compounds for making fertilizers
The CONFETI project aims to develop a sustainable technology for converting CO2 and N2 into urea fertilizer using renewable energy, promoting a circular economy in agriculture.
Electrobiocatalytic cascade for bulk reduction of CO2 to CO coupled to fermentative production of high value diamine monomers
ECOMO aims to innovate sustainable production of high-value diamines from CO2 and nitrogen using bioelectrocatalysis and engineered microbes, enhancing chemical industry building blocks.
Green H2 and circular bio-coal from biowaste for cost-competitive sustainable Steel
H2STEEL aims to transform wet waste into green hydrogen, carbon, and critical raw materials for metallurgy, supporting the EU's net-zero emissions goal through innovative pyrolysis and leaching methods.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Energieneutrale en Positieve Mestverwaarding m.b.v. Condensing Retort™ pyrolysetechnologieHet project ontwikkelt pyrolysetechnologie voor mestverwerking om kosten te verlagen, hoogwaardige producten te creëren en broeikasgasemissies te reduceren, met positieve financiële en maatschappelijke impact. | Mkb-innovati... | € 192.915 | 2015 | Details |
Demonstrating the production of plant-based biochar in the compost cycle and developing high value-added biochar products.The project aims to develop an innovative modular pyrolysis system for producing high-value biochar from organic waste, enhancing sustainability and reducing CO2 emissions. | LIFE Standar... | € 2.033.214 | 2024 | Details |
Dimethylether verwaarding uit biogas CO2Het project onderzoekt de haalbaarheid van een CO2 naar DME reactor om biogas te optimaliseren, met als doel duurzame producten te creëren en de circulaire economie te bevorderen. | Mkb-innovati... | € 20.000 | 2020 | Details |
BIOCHARHet project onderzoekt de haalbaarheid van nieuwe toepassingen voor biochar ter vervanging van fossiele grondstoffen en verbetering van duurzaamheid. | Mkb-innovati... | € 20.000 | 2021 | Details |
Haalbaarheidsonderzoek axiaal-radiaal reactor.Het project onderzoekt de haalbaarheid van een innovatieve, efficiënte en kleinere reactor voor de omzetting van CO2 en waterstof naar biobrandstoffen, met als doel kosten te verlagen en emissies te reduceren. | Mkb-innovati... | € 20.000 | 2021 | Details |
Energieneutrale en Positieve Mestverwaarding m.b.v. Condensing Retort™ pyrolysetechnologie
Het project ontwikkelt pyrolysetechnologie voor mestverwerking om kosten te verlagen, hoogwaardige producten te creëren en broeikasgasemissies te reduceren, met positieve financiële en maatschappelijke impact.
Demonstrating the production of plant-based biochar in the compost cycle and developing high value-added biochar products.
The project aims to develop an innovative modular pyrolysis system for producing high-value biochar from organic waste, enhancing sustainability and reducing CO2 emissions.
Dimethylether verwaarding uit biogas CO2
Het project onderzoekt de haalbaarheid van een CO2 naar DME reactor om biogas te optimaliseren, met als doel duurzame producten te creëren en de circulaire economie te bevorderen.
BIOCHAR
Het project onderzoekt de haalbaarheid van nieuwe toepassingen voor biochar ter vervanging van fossiele grondstoffen en verbetering van duurzaamheid.
Haalbaarheidsonderzoek axiaal-radiaal reactor.
Het project onderzoekt de haalbaarheid van een innovatieve, efficiënte en kleinere reactor voor de omzetting van CO2 en waterstof naar biobrandstoffen, met als doel kosten te verlagen en emissies te reduceren.